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Abstract

Background: Mendelian randomization (MR) is a powerful tool through which the causal

effects of modifiable exposures on outcomes can be estimated from observational data.

Most exposures vary throughout the life course, but MR is commonly applied to one

measurement of an exposure (e.g. weight measured once between ages 40 and

60 years). It has been argued that MR provides biased causal effect estimates when

applied to one measure of an exposure that varies over time.

Methods: We propose an approach that emphasizes the liability that causes the entire

exposure trajectory. We demonstrate this approach using simulations and an applied

example.

Results: We show that rather than estimating the direct or total causal effect of changing

the exposure value at a given time, MR estimates the causal effect of changing the under-

lying liability for the exposure, scaled to the effect of the liability on the exposure at that

time. As such, results from MR conducted at different time points are expected to differ

(unless the effect of the liability on exposure is constant over time), as we illustrate by

estimating the effect of body mass index measured at different ages on systolic blood

pressure.

Conclusion: Univariable MR results should not be interpreted as time-point-specific

direct or total causal effects, but as the effect of changing the liability for the exposure.

Estimates of how the effects of a genetic variant on an exposure vary over time, together

with biological knowledge that provides evidence regarding likely effective exposure

periods, are required to interpret time-point-specific causal effects.

Key words: Mendelian randomization, causal inference, longitudinal, simulation

VC The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. 1899

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

IEA
International Epidemiological Association

International Journal of Epidemiology, 2022, 1899–1909

https://doi.org/10.1093/ije/dyac136

Advance Access Publication Date: 15 July 2022

Original article

https://orcid.org/0000-0001-8178-6815
https://orcid.org/0000-0001-5188-5775
https://orcid.org/0000-0002-1407-8314
https://academic.oup.com/


Introduction

Mendelian randomization

Mendelian randomization (MR) is a powerful tool through

which the causal effects of modifiable exposures (risk factors)

can be estimated from observational data under assumptions

that in some circumstances may be more plausible than the

unmeasured confounding and no measurement error assump-

tions required by conventional methods.1 MR is generally

implemented within an instrumental variables (IV) frame-

work that exploits the randomization inherent in the alloca-

tion of genotypes at conception and gamete cell formation,

using this random variation in alleles to instrument differen-

ces in observed exposures between individuals.2 Reverse and

residual confounding is reduced because the formation of the

genotype occurs prior to the phenotypic development and is

generally not related to environmental factors.3,4

Three assumptions are required for MR analyses to test

the null hypothesis that an exposure X does not cause an out-

come Y for any individuals. These are (i) relevance: that ge-

notype is associated with the exposure of interest; (ii)

independence: that there is no common cause of genotype

and outcome; (iii) exclusion: that genotype does not affect

the outcome through any path other than the exposure.5,6 In

order to estimate an average treatment effect, extra assump-

tions are needed: first, that a difference in average exposure

between populations with and without a risk allele would re-

sult in the same difference in outcome as if an environmental

factor increased average exposure in a population by the

same amount (gene–environment equivalence) and, second,

that the structural model relating the exposure and outcome

is linear and additive with a homogeneous effect of the expo-

sure on the outcome.7–9

MR studies have largely leveraged information from a

single measurement of the exposure and outcome, often

due to limited availability of repeatedly measured data.

Many exposures of interest vary over time,10,11 being sub-

ject to both between-individual and within-individual

variation. Within-individual variation may be largely a

function of measurement error (e.g. height in

adulthood12), longitudinal within-individual phenotypic

variability (BMI13), monotonic change (myopia14) or,

likely, a mixture of these. Time-varying genetic associa-

tions have been reported for a range of phenotypes,15–21

thus consistent effect sizes may not be estimated when ap-

plying MR to exposures measured at different time points

across the lifecourse, regardless of sampling variation and

measurement error.18,22

MR applied to one measure of an exposure that

varies over time

It has long been recognized that MR estimates relate to

exposures that generally act over a considerable period of

time, often since birth.1,23 Many single-nucleotide poly-

morphism (SNP)-phenotype associations have a consistent

direction of effect and similar effect sizes throughout the

lifecourse, though this pattern is not uniform.24 More re-

cently, it has been questioned how appropriate MR is

when applied to exposures that vary over time.25–27

Labrecque and Swanson propose one possible definition of

a lifetime effect that might be of interest: the effect of in-

creasing the exposure by one unit at each time point

throughout the lifecourse.25 In order to estimate this effect

using MR, the association between genotype and exposure

needs to be constant over time, giving rise to parallel expo-

sure trajectories (a one-unit change in the genotype will

give rise to the same difference in exposure at time t as at

time t þ 1). They demonstrated that estimates of this

causal effect from MR differ over time in the presence of

time-varying genotype–exposure associations, concluding

that MR provides a biased estimate of the causal effect of

increasing the exposure by one unit at each time point.

Concerns have also been raised that MR with time-varying

exposures may be biased if a feedback mechanism exists in

which genetic factors influence predisposition to an out-

come, which in turn influences the exposure at a subse-

quent time point.26 For example, where instruments for

coronary heart disease (CHD) relate to C-reactive protein

(CRP) because the instruments for CHD relate to

developing atheroma, which in turn increases CRP.

Key Messages

• Many exposures of interest vary over time, yet Mendelian randomization (MR) is commonly applied to one

measurement of an exposure.

• MR does not estimate direct or total causal effect of changing an exposure value at a given time.

• MR estimates the causal effect of changing the exposure liability that gives rise to an exposure value at a given time.

• MR results from time-varying exposures should be interpreted with respect to the underlying liability for an

exposure.
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We propose an approach that uses MR to assess the ef-

fect on the outcome of the change in the entire exposure

history that would be induced by a change in genotype.

That is, we are not estimating the causal effect of an expo-

sure as it manifests at a given time point, but the effect of

the underlying exposure liability. That is, we assume that

there is some unobserved (latent) variable L, which is

caused by the genotype G, and in turn causes the exposure

at every instance across the lifecourse. Although the effect

of liability on outcome is the estimand of interest, the lia-

bility is unobserved, so we must estimate its effect via the

measured exposure(s). Here, we consider the simplified

case with one genetic instrument (G), a time-varying con-

tinuous exposure that only occurs on two occasions (X0

and X1), one of which is measured, an outcome that occurs

at one time point (Y) and an unmeasured confounder U

(Figure 1). Thus, a change in genotype changes L, which

changes both X0 and X1. The case in which X occurs in

continuous time is described in the Supplementary text

(available as Supplementary data at IJE online).

Our approach overcomes two problems with the inter-

pretation of MR with time-varying exposures. First, if G

changes, both X0 and X1 must be changed together; a one-

unit change in G (e.g. an increase of one risk allele) cannot

change one of the exposures in isolation. Where time-

varying genetic effects exist, the change in genotype G re-

quired to raise a given exposure trajectory by one unit at

time t (e.g. raising the weight by 1 kg at birth) may be quite

different to the change in genotype required to change the

exposure by one unit at time t þ k (e.g. raising the weight

by 1 kg at age 50 years). Second, a one-unit change in G

cannot have an arbitrary effect on the exposure trajectory

(e.g. increasing exposure by exactly one unit at all times).

Thus, univariable MR with one genetic instrument that

acts on exposure over a period of time cannot be used to

recover the effect of a change in exposure at a single time,

nor of any arbitrary change to the trajectory of exposure.

Instead, we argue that MR with a time-varying continuous

exposure can be used to examine the effect of a specific

change in the trajectory of that exposure, depending on

how the genotype impacts the trajectory. Here, the effect

refers to the liability L, i.e. we are estimating the effect on

the outcome of changing L. It should be noted that there

will be no information about the shape of the typical

trajectory from a study with only one measurement of a

time-varying exposure taken at the same time point for all

participants. In this case external information would be

needed (e.g. from a separate longitudinal study).

This interpretation of the MR estimate can be clearly

seen from the terms in the Wald estimator. Here, the nu-

merator is the effect of a change in SNP on the outcome.

The denominator is the effect of a change in SNP on the ex-

posure at a given time point. This denominator is equal to

the effect of a one-unit change in SNP on the liability, mul-

tiplied by the total effect of the liability on the exposure at

the given time point. Thus, the Wald estimate is the effect

of a change in the liability on the outcome (effect of SNP

on outcome divided by effect of SNP on exposure liability),

scaled such that the liability causes a one-unit change in ex-

posure at that time point.

For simplicity, our example has just one SNP causing L.

However, L may be instrumented by multiple SNPs. The

emphasis here is that the effects of X0 and X1 cannot be

separated in the case where our instrument(s) act through a

1D liability (L). The effects of X0 and X1 could potentially

be separately estimated within a multivariable MR frame-

work if two or more different liabilities have been identi-

fied that have different effects on X0 and X1, and if there

were really only two exposures.28 In more realistic scenar-

ios, however, it is unlikely that the exposure will only

occur at a small number of time points—it is likely to occur

over continuous time (see Supplementary material,

available as Supplementary data at IJE online).

In this paper, we clarify the causal quantities that are es-

timated by MR when applied to time-varying exposures

with time-varying genetic effects assuming a liability struc-

ture and how they should be interpreted.

Methods

Effects of interest

We define two estimands of interest: the total effect of a

one-unit change in an exposure Xk (i.e. exposure X mea-

sured at a specific time point tk) on an outcome Y (bTk);

and a ‘liability effect’—the causal effect on Y of a change

in the liability L, such that Xk increases in expectation by

Figure 1 Causal diagram showing two exposures and one outcome

G, genetic instrument; L, liability; X0, exposure measured at time 0; X1,

exposure measured at time 1; Y , outcome; U, confounder. Other sour-

ces of variability in the liability, exposures and outcome are not shown

in this diagram. There is a problem of under-identification here in that

the direct effects of X0 or X1 on Y cannot be estimated with a single

liability (L).
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one unit (bLk
). We derive algebraic expressions for these

estimands under a linear model in the case of a time-

varying exposure that occurs at two time points and one

outcome, with more general derivations given in the

Supplementary material (available as Supplementary data

at IJE online).

Total effect

We define bTk to be the total effect of Xk on the outcome

Y, i.e. the change in Y from increasing Xk by one unit.

This includes the direct effect of Xk on Y, and the indirect

effect via the effect of Xk on subsequent occurrences of the

exposure Xm where m > k.

Lifetime liability effect for a specific liability

We define the liability effect (bLÞ as the causal effect on Y

of increasing the liability L by one unit. We define the lia-

bility effect at time k (bLk
Þ as the causal effect of changing

the liability L such that the expected value of the exposure

measured at time k is increased by one unit. This can be

thought of as the effect of moving all individuals from the

liability L giving rise to EðXÞ ¼ x at time k, to a liability

L1 that would give rise to EðXÞ ¼ x þ 1 at time k.

We now derive expressions for the total and liability

causal effect in the situation with an outcome Y that is

caused by a genetically influenced liability L for an expo-

sure X occurring at two time points (X0 and X1)

(Figure 2). The genetic instrument G can have a non-linear

relationship with the underlying liability L, but for simplic-

ity we assume here that L is a linear function of G and U.

We assume linearity and additivity from L to the exposure

measurements Xk and from exposures to outcome Y. The

effect of L on exposure measures is allowed to change with

time/age, thus the shape of the trajectory of X with age can

be non-linear.

We assume (Figure 2) that:

L ¼ c1Gþ aLU þ eL

X0 ¼ c2Lþ a0U þ e0

X1 ¼ c3Lþ c5X0 þ a1U þ e1

Y ¼ c6X1 þ c4X0 þ aYU þ eY

where all errors (eL; e0; e1 and eYÞ are distributed with

mean zero and are mutually independent.

The total effect of a one-unit change in X0 on Y (bT0
) is

given by:

bT0
¼ c4 þ c5c6

The total effect of a one-unit change in X1 on Y is given

by:

bT1
¼ c6

The liability effect is the causal effect of a one-unit in-

crease in liability, which is given by:

bL ¼ c2c4 þ c2c5c6 þ c3c6

Turning to the liability effect at time 0, bL0
(the effect of

increasing the liability such that X0 increases in expecta-

tion by one unit), a one-unit increase in EðX0Þ occurs be-

cause there is an increase in L from l10 to L ¼ l10 þ 1
c2ð Þ

.

If L ¼ l10, then:

E Yjdo l10ð Þ
� �

¼ y00 ¼ l10 c2c4 þ c2c5c6 þ c3c6ð Þ

If L ¼ l10 þ 1
c2ð Þ
; then:

E Yjdo l10 þ
1

c2ð Þ

 ! ! !
¼ y10

¼ l10 þ
1

c2

� �
c2c4 þ c2c5c6 þ c3c6ð Þ

The effect on Y of changing the liability L such that it

raises X0 by one unit is therefore given by:

bL0
¼ y10 � y00 ¼

c2c4 þ c2c5c6 þ c3c6ð Þ
c2

(1)

A one-unit increase in expectation in X1 would occur

because there is an increase in L from l11 to l11 þ 1
c2c5þc3ð Þ

If L ¼ l11 then

E Yjdo l11ð Þ
� �

¼ y01 ¼ l11 c2c4 þ c2c5c6 þ c3c6ð Þ

If L ¼ l11 þ 1
c2c5þc3ð Þ then

Figure 2 Directed acyclic graph showing the exposure liability in the

context of two exposures and one outcome

G, genetic instrument; L, liability; X0, exposure measured at time 0; X1,

exposure measured at time 1; Y , outcome. Note that confounders or

other causes of variability in liability, exposures or outcome are not

shown.
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E Yjdo l11 þ
1

c2c5 þ c3ð Þ

 ! ! !
¼ y11

¼ l11 þ
1

c2c5 þ c3ð Þ

 !
c2c4 þ c2c5c6 þ c3c6ð Þ

The effect on Y of changing L such that X1 is increased

by one unit in expectation is given by:

bL1
¼ y11 � y01 ¼

c2c4 þ c2c5c6 þ c3c6ð Þ
c2c5 þ c3

(2)

MR

To investigate what the Wald Ratio (b̂MRk) using Xk as ex-

posure is estimating in our setting, we need to calculate the

effect of G on Y, and the effect of G on Xk: In our exam-

ple, we only have two occurrences of the exposure, so

k¼ 0 or 1. For examples with the exposure in continuous

time, see the Supplementary material (available as

Supplementary data at IJE online). We now derive the

expressions for what is estimated with exposures X0 and

X1 using the usual Wald Ratio.

The effect of G on Y is:

bGY ¼ c1 c2c4 þ c2c5c6 þ c3c6ð Þ (3)

The effect of G on X0 is:

bGX0
¼ c1c2 (4)

The effect of G on X1 is:

bGX1
¼ c1 c2c4 þ c2c5 þ c1c3ð Þ (5)

The Wald Ratio MR estimand with X0 as a single expo-

sure is given by Equation (3)/Equation (4):

bMR0
¼

c1 c2c4 þ c2c5c6 þ c3c6ð Þ
c1 c2ð Þ

¼ ðc2c4 þ c2c5c6 þ c3c6Þ
ðc2Þ

(6)

The Wald Ratio MR estimand bMR0
in Equation (6) is

equal to the effect on Y of changing the liability L such

that it raises X0 by one unit in expectation in Equation (1),

and hence estimates bL0
, the liability effect of X0 on Y.

The Wald Ratio MR estimand with X1 as a single

exposure is given by Equation (3)/Equation (5):

bMR1
¼

c1 c2c4 þ c2c5c6 þ c3c6ð Þ
c1 c2c5 þ c3ð Þ

¼
c2c4 þ c2c5c6 þ c3c6ð Þ

c2c5 þ c3ð Þ
(7)

The Wald Ratio MR estimand in Equation (7) is equal

to the effect on Y of changing the liability L resulting in a

one-unit change in X1 in Equation (2), and hence estimates

bL1
the liability effect of X1 on Y. Importantly, both liabil-

ity effects include effects through the other exposure X.

MR with a single liability L can therefore only examine

whether there is evidence for a causal effect of some mea-

sure of the exposure (at some time point in the period in

which the liability L operates) on the outcome, not which

part of the exposure trajectory is causal. This is because

the liability L affects all the exposures jointly in the period

in which it operates, so estimating the effect on Y of chang-

ing the liability does not give information about which of

the exposures caused by the liability cause(s) the outcome.

It does not matter whether genotype–exposure associations

are time-varying or time-invariant; the null hypothesis

tested using MR (which does not require the parametric

assumptions, only the structural assumptions) is that the li-

ability L does not cause the outcome, i.e. there is no part

of the trajectory that causes the outcome. If the liability

does not cause the outcome, a null effect will be correctly

detected using MR.6 The Wald Ratio MR estimand based

on the single exposure measurement Xk, the liability effect,

is the effect of increasing L such that Xk increases by one

unit without holding the other X fixed. We extend this to

an outcome measured at multiple time points in the

Supplementary material (available as Supplementary data

at IJE online).

Simulation approach

We describe our simulation approach within the ADEMP

framework.29

(A)ims

The aim of the simulation was to illustrate the causal effect

estimates described above.

(D)ata-generating mechanisms

We simulated data for 10 000 hypothetical individuals

(nobs ¼ 10 000), representing a genotyped cohort sample

with exposure occurring at two time points (t0; t1). Let G

represent the genotype of individuals simulated as a single

variant (effect alleles¼0; 1;2) with minor allele frequency

set to 0:2 and genotype drawn from this with a binomial

distribution. We simulate a liability L underlying a time-

varying exposure (Xk) that occurs on two occasions k

(k¼ 0,1), an outcome that occurs once (Y) and a

time-invariant confounder (U) of exposure and outcome

variables. Random measurement error was simulated for
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all variables except the genetic instrument. Associations of

the exposure and outcome with the unobserved con-

founder (a0; a1; aY) were set at 0.3. For simplicity, the as-

sociation between the liability and the confounder ðaLÞ
was set to 0. Base parameters were set as follows: c1 ¼0.5

c2 ¼ 0.5; c3 ¼ 0.5; c4 ¼ 0.4; c5 ¼ 0.3; and c6 ¼0.4

(Figures 2 and 3). One by one all base parameters except

c1 were set to zero to investigate the change in coefficient

estimated. This allowed us to interrogate differential (i)

strength of the genetic instrument; (ii) time-varying genetic

associations; (iii) exposure effects on the outcome(s); and

(iv) confounding effects. Note that the value of the liability

effects for the exposures will not remain constant but will

change depending on the base parameters. Results are pre-

sented for 1000 replications of each simulation. All data

were generated within Stata. The programme code used to

run the simulations is available at https://github.com/timt

morris/time-varying-MR and can be used to vary all

parameters.

(E)stimands

We estimate the liability effect bLk
, the effect of increasing

L such that Xk increases by one unit, on Y by MR using

the Wald Ratio and the standard error (SE) of this estimate

in our simulations.

(M)odel

We assume the linear structural equation model in

Figure 3.

(P)erformance measures

We used three performance measures to assess the esti-

mates in our simulations: the mean of the estimates of the

liability effects for X0 and X1, the mean of the SEs of the li-

ability effects for X0 and X1 across 1000 replications, and

the deviation (and SE) of the estimates of the liability

effects for X0 and X1 from their expectation given the

model parameters.

Results

Simulations

Simulations illustrate that the Wald Ratio MR estimator

correctly recovers the liability causal effect in all scenarios

with a time-varying exposure, even where time-varying ge-

netic associations existed (Table 1). The estimate of the lia-

bility effect of X0 on Y is different to that of X1 on Y. This

is because MR is estimating the effect of L on Y rather

than the effect of Xk itself, i.e. the change in L required to

raise X0 by one unit is 2 (¼ 1/0.5), whereas the change in L

required to raise X1 by one unit is 1.54 (¼ 1/0.65). Non-

zero estimates are recovered for the liability effect of X0 on

Y even when there is no direct path from X0 to Y (i.e.

c4 ¼ 0). This non-zero coefficient arises because MR esti-

mates the causal effect of changing the liability such that

the exposure measured at time t0 is one unit higher, not the

effect of a one-unit change in X0 whilst holding X1 con-

stant. Similarly, there is a non-zero estimate for the liability

effect of X1 on Y even if there is no direct effect from X1 to

Y (i.e. c6 ¼ 0), because the change in liability causing the

change in X1 will have also changed X0. It does not matter

when the exposures are measured with respect to the out-

come (provided that earlier exposures influence the out-

come); non-zero effects of X1 on Y will be correctly

estimated even if the exposure is measured after the out-

come. Note that the MR estimates in Table 1 do not

Table 1 Estimates, standard errors and bias of the liability

effect of a time-varying exposure on an outcome using

Mendelian randomization given the parameters in Figure 3

Parameter values Liability effect of:

X0 on Y X1 on Y

[estimate (SE)] [estimate (SE)]

[Bias (SE)] [Bias (SE)]

Base parameters

in directed

acyclic graph

0.92 (0.042) 0.71 (0.031)

c2 ¼ 0 –6.93 (57 811.605) 0.4 (0.041)

7.448 (24.217) 0.001 (0.001)

c3 ¼ 0 0.52 (0.041) 1.76 (0.207)

–0.001 (0.001) –0.026 (0.006)

c4 ¼ 0 0.52 (0.042) 0.4 (0.028)

0.002 (0.001) –0.001 (0.001)

c5 ¼ 0 0.8 (0.042) 0.8 (0.042)

0 (0.001) 0.001 (0.001)

c6 ¼ 0 0.4 (0.037) 0.31 (0.031)

0.002 (0.001) 0.001 (0.001)

U ¼ 0 0.92 (0.041) 0.71 (0.03)

0 (0.001) 0 (0.001)

Bias presented as ‘0.000’ where –0.001<mean bias< 0.001. SE, standard

error.

Figure 3 Simulated parameters

G; genotype; L, liability; X0, exposure measured at time 0;

X1; exposure measured at time 1; Y ; outcome; U, confounder.
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correspond to the estimates of the direct effects of X0 or

X1 on Y except for the cases in which the liability has no

effect on X0 or either X0 or X1 has no direct effect on Y.

Where there are more than two exposure measurements,

all direct effects on the outcome except for the exposure

under consideration would have to be zero for MR to pro-

vide an unbiased estimate of the direct effect of that

exposure.

MR recovers liability effects even where simulations are

extended to include outcome–exposure feedback effects or

reverse confounding (Supplementary material, available as

Supplementary data at IJE online). Where the liability does

not cause exposure during a specific time period (e.g. a ge-

notype may only cause weight gain after puberty), weak in-

strument bias may affect estimates of the effect of the

change in liability required to increase exposure during

that period by one unit (Table 1, where c2 ¼ 0).30 This

bias is smaller for later measures of exposure (Table 1,

where c3 ¼ 0) because genetic effects here can operate via

earlier occurrences.

Cross-sectional total effects estimated using linear re-

gression are biased even where unobserved confounding

from U is absent due to confounding by the liability L that

underlies the repeat measures of exposure (Supplementary

material, available as Supplementary data at IJE online).

MR of body mass index measured at different

ages on systolic blood pressure

We used two-sample MR to estimate the liability effect of

body mass index (BMI) at different ages on systolic blood

pressure (SBP) using the SNP rs9939609 located in the fat

mass and obesity-associated gene (FTO). Note that this

single SNP approach prohibited standard two-sample MR

sensitivity analyses but provided a suitable proof of con-

cept. We estimated FTO–BMI associations from a study

using data from the 1958 National Survey of Health and

Development British cohort in which BMI was measured

on 11 occasions between ages 2 and 53 years (n¼ 2479) by

Hardy et al.21 We estimated FTO–hypertension associa-

tions from a study of Danish individuals in the

Copenhagen General Population Study with mean age

57.6 years [standard deviation (SD): 13.49] by Timpson

et al. (n¼ 37 027), thus ensuring no sample overlap.31 All

associations were consistent with the study of individuals

in the Rotterdam Study (n¼ 5123) by Labrecque and

Swanson.25

MR results from these SNP–exposure and SNP–out-

come associations varied greatly depending on when the

exposure was measured (Table 2). This variation in results

does not invalidate MR,25 but is expected because the ef-

fect of genotype on exposure varied over age (Figure 4).

The interpretation of the MR estimate is with respect to

the underlying liability. So, from Table 2, the effect of

changing the liability such that BMI increases by one SD

unit in expectation at age 11 years would be to increase

mid-life blood pressure by 6.08 mmHg (SE: 2.32 mmHg).

The effect of changing the liability such that BMI increases

in expectation by one SD unit at age 53 years would be to

increase mid-life blood pressure by 12.78 mmHg (SE:

7.77 mmHg). Although these are different, their consis-

tency can be verified by examining Figure 4, and the effect

of genotype on BMI at different ages shown in Table 2—

the effect of a one-unit change in genotype (which would

equate to a change in liability) on measured BMI z-score is

twice as large at age 11 years as at age 53 years.

MR estimates obtained on different occasions can be con-

verted to the same liability scale provided that SNP–exposure

associations on these occasions can be estimated. This con-

version can be made by multiplying the Wald Ratio estimate

by the SNP–exposure association at its age divided by the

SNP association at another (target) age. Taking FTO–BMI

and FTO–hypertension associations from the Hardy et al.

and the Timpson et al. studies (Table 2), multiplying the age

53 years estimate (12.78 mmHg per SD of BMI) by the

SNP–exposure association at age 20 years (0.1412) divided

by the SNP–exposure association at age 53 years (0.0493)

gives us the liability effect of BMI on SBP at age 20 years of

4.46 4:46 ¼ 12:78 � 0:0493
0:1412

� �
. The third column of

Table 2 shows the association of G with a one-unit SD

change in BMI at each age. This varies due to variation in

SNP–exposure associations at different ages. The last column

shows the exposure difference at specific ages that corre-

sponds to a liability-induced increase in BMI of one SD unit

at age 20 years. This information helps to interpret the differ-

ing MR estimates and could be used to conduct a

Genomewide Association Study (GWAS) meta-analysis in

which the exposure was measured at different ages in differ-

ent studies.

Discussion

Here we have clarified that MR (using the Wald Ratio esti-

mator) using only one measure of an exposure that varies

over time estimates the causal effect of the liability that

underlies the exposure. That is, MR applied to exposures

that vary over time estimates the causal effect of the under-

lying liability rather than the causal effect of the exposure

as it manifests at a given measurement occasion. Although

the effect of liability on outcome is the estimand that can

be estimated using MR, as the genotype acts on the liability

rather than a specific exposure, the liability is unobserved,

so we must estimate its effect via the measured exposures.
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The MR estimate of the liability effect does not require

time-invariant genotype–exposure associations under the

assumptions that the structural model is linear and addi-

tive, providing that the instruments are valid instruments

for the underlying liability.11,25 There is also no assump-

tion that the liability L should have the same direction of

effect on exposure at all time points.33 We do not suggest

that the construct of a 1D liability is suitable for every situ-

ation with time-varying exposure, but when it is, then the

present paper gives an interpretation.

We have demonstrated that MR estimates the causal ef-

fect of a change in liability L that results in an expected

one-unit change in exposure Xt. MR with a single genetic

proxy of liability cannot in general be used to infer the di-

rect or total effect of an exposure at a specific point in

time, or to draw inferences about changes in exposure tra-

jectories different to the one that L causes (e.g. the effect of

increasing exposure by one unit at all time points).25

Results from MR conducted at different exposure time

points will necessarily differ where time-varying gene–ex-

posure associations exist. However, this does not invali-

date MR as previously argued,25 but highlights that it is

testing the effect of the liability L on outcome.34

Estimation of time-specific causal effects (i.e. what is the

direct or total effect of the exposure at a given time point

on the outcome) will usually not be possible with instru-

ments for one liability that affects all periods of exposure,

in the absence of other information.

We proposed a new definition of the causal effect esti-

mated by MR using one measure of a time-varying expo-

sure and one liability, the ‘liability effect’, as the causal

effect of changing the liability such that one particular

measurement of exposure would be one unit higher at a

given time, and all other occurrences of the exposure

would change accordingly. The estimated liability causal

effect will differ in size if the exposure is measured at a dif-

ferent time point, but the estimates will be consistent with

the underlying trajectory of exposure induced by the SNP

as shown in Table 2. Although the FTO trajectories from

the study by Hardy et al.21 study will likely differ from

those in larger studies,35 these have been used for illustra-

tive purposes as they cover a broad range of ages. Our

Table 2 Results from Mendelian randomization with time-varying exposures for the causal effect of body mass index z-score on

systolic blood pressure using rs9939609

Age (years) SNP–exposure

association (SE)

MR estimate (SE) Association of G with a

one-unit SD difference

in BMI (SE)

Liability exposure difference

equivalent to a one-unit SD

difference in exposure at

age 20 years (SE)

2 0.013 (0.033) 49.56 (127.47) 78.7 (201.4) 0.09 (0.23)

4 0.019 (0.030) 32.69 (51.68) 51.9 (81.1) 0.14 (0.22)

6 0.0035 (0.031) 178.63 (1546.5) 283.5 (2453.9) 0.025 (0.22)

7 0.043 (0.030) 14.79 (11.18) 23.5 (16.8) 0.30 (0.23)

11 0.104 (0.031) 6.08 (2.32) 9.7 (2.85) 0.73 (0.27)

15 0.107 (0.031) 5.88 (2.23) 9.3 (2.71) 0.76 (0.28)

20 0.141 (0.031) 4.46 (1.46) 7.1 (1.56) Reference

26 0.097 (0.030) 6.46 (2.52) 10.3 (3.13) 0.69 (0.26)

36 0.070 (0.029) 9.0 (4.30) 14.3 (5.87) 0.50 (0.23)

43 0.043 (0.028) 14.73 (10.30) 23.4 (15.33) 0.30 (0.21)

53 0.049 (0.027) 12.78 (7.77) 20.3 (11.31) 0.35 (0.21)

SNP–exposure associations taken from Hardy et al.21; SNP–outcome association taken from Timpson et al.31 Standard errors for ratio estimates were com-

puted using the formula in Burgess et al.32 ignoring covariance between SNP–exposure effects at different ages.

SNP, single-nucleotide polymorphism; SE, standard error; MR, Mendelian randomization; BMI, body mass index. The SNP–outcome association from

Timpson et al.31 was 0.63 (SE: 0.153).

Figure 4 Linear prediction of mean body mass index at different ages

from additive genetic models by FTO rs9939609 genotype

FTO, fat mass and obesity-associated gene. AA: two risk variant; AT:

one risk variant; TT: zero risk variants.
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interpretation differs from that previously suggested by

Labrecque and Swanson25 in that it rests upon a liability

caused by a specific genotype. Labrecque and Swanson

demonstrated that MR is sensitive to age-related variation

in SNP–exposure associations and we have demonstrated

that these differences are a necessary component of

time-varying exposures. Our assumption that genotype

may act, through liability L, upon the whole lifecourse ex-

posure trajectory36 rather than a single exposure measure-

ment is supported by studies demonstrating time-varying

genetic associations.15–20

It may seem counter-intuitive to use the instrument to

describe the causal effect to be estimated, e.g. we are esti-

mating the effect of the liability that is associated with a

given SNP. So if a one-unit increase in SNP causes an in-

crease in exposure at time t0 of one unit and an increase in

exposure at time t1 of two units, then the gene–environ-

ment equivalence means that the MR estimate of the effect

of this liability on outcome is the same as the effect of any

intervention that raised the exposure by one unit at t0 and

two units at time t1. The underlying point is that we can

only examine the effect of a liability that has an instrument

associated with it. For example, should an analyst wish to

estimate the effect of increasing X by one unit at all time

points, an instrument that has a constant effect on expo-

sure over the lifecourse would be required. If the interest is

in a liability that causes X to double every 10 years, then

an instrument that has this (or a proportional) effect is re-

quired. Genetic variants may better relate to relative than

absolute differences in some phenotypes and where this is

the case, transformations of phenotypes may be considered

to demonstrate more consistent effect sizes throughout the

lifecourse. Here, MR effects would be consistent over time.

There are thus two consequences of our results. First, if

the aim is to estimate the effect of a specific liability, then

the researcher needs to find an instrument for that liability.

This is no different to any other situation in which some

desired exposures cannot be instrumented genetically (e.g.

it is hard to imagine a valid genetic instrument for cycling

to work). Second, interpretation of an MR of an exposure

that varies over time is with respect to the liability for that

exposure that is induced by the given genotype. Thus, in-

terpretation of an MR estimate of a time-varying exposure

requires knowledge of the liability induced by the geno-

type. This in turn means that if several genotypes have dif-

ferent effects on the liability for exposure (e.g. one

increases exposure during early ages and has a constant ef-

fect after age 20 years and another decreases exposure dur-

ing early ages and has a constant effect after age 20 years)

but the same effect on outcome, this would imply that it

was the exposure after age 20 years that was important for

this outcome. If there are SNPs associated with different

liabilities in this way, then multivariable MR (MVMR)28

could be formally used to estimate the effects of the liabil-

ity for exposure before and after age 20 years.

Our simulations also illustrate that MR is not biased

with respect to the liability effect by longitudinal exposure

mediation, where earlier exposure measures cause later ex-

posure measures. Again, it is not possible to draw infer-

ences on the timing of causal effects because it is the effect

of the liability that is being estimated, which goes through

exposure at all time points whether measured or not. An

effect of the exposure on the outcome could still be ob-

served even if the exposure is measured later than the out-

come, as it is the estimated effect of the liability to the

exposure on the outcome that will be estimated. Similarly,

if an outcome affects a later measurement of exposure, an

investigator will not incorrectly conclude that the outcome

causes the exposure, but they may incorrectly conclude

that exposure at a given age causes an outcome. With one

liability for an exposure, a cumulative effect of exposure

will be indistinguishable from an effect of exposure only

during specific time periods; as stated before, one can only

say that some part of the exposure trajectory is causal, but

not which part.6 The lack of the ability to determine causal

effects at specific time points complicates comparisons be-

tween MR and randomized–controlled trials (RCTs). In an

RCT, the timing of exposure (intervention) can be modi-

fied (e.g. an intervention can be given at any age, or any

stage in a disease time course, as specified by the design of

the study) and an intervention will have a specific effect on

the subsequent pattern of exposure, e.g. randomization to

a weight-loss intervention at age 40 years might lower BMI

by one unit at age 43 years, but by age 53 years the two

arms of the trial could have the same average BMI. This

RCT would thus estimate a different effect on outcome

than the MR estimate of the liability effect at age 43 years

using the FTO genotype shown in Table 2.

Although we investigated a single SNP, this interpreta-

tion of time-varying MR can in principle be extended to

multiple SNPs if they all act on the same underlying liabil-

ity to exposure (L, in Figure 1). It is however highly un-

likely that any two SNPs will induce the same liability and

thus the same exposure trajectory (non-causal SNPs that

tag the same causal variant would not be seen to produce

the trajectory). If different SNPs have differing time-

varying associations with the exposure, then their esti-

mated liability effects of exposure on outcome will differ.

Future studies should assess heterogeneity between groups

of SNPs with repeat measures of exposure to assess the

consistency of trajectories of exposure.11 Assuming multi-

ple liabilities through MVMR may allow investigators to

more reliably test hypotheses about exposures during dif-

ferent time periods.37,38 For example, a recent MR study
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using multiple instruments with different effects on early

(age 10 years) and later life (age 57 years) BMI could draw

inferences about the different contributions of liability for

BMI at ages 10 and 57 years.15 An MR study with a single

instrument (or multiple instruments acting on the same lia-

bility) could only draw inferences on the whole time period

acted on by that liability.

Our liability effect and the Wald Ratio estimator rely

on a linear, additive structural model, but do not make any

assumptions about the timing of how exposure affects the

outcome. For example, the exposure may act cumulatively

on the outcome, may have sensitive or critical periods39 or

may have different effects depending on its proximity to

the outcome window. If the mechanism of exposure is

known, then the appropriate summary of exposure could

be derived and used in MR, e.g. using cumulative exposure

or functional principal component analysis to summarize

trajectories of exposure.40 Further longitudinal genetic

studies that investigate time-varying genetic associations

with exposures are therefore required to better triangulate

causal evidence.41

This framework of an effect of an underlying liability

can be extended from multiple measures of the same phe-

notype to measures of different phenotypes. However, in

univariable MR, the assumption would be that instruments

only act on a common liability and do not have any direct

effects on different phenotypes. To estimate separate direct

effects on two phenotypes, one would need to use separate

liabilities within an MVMR framework.28

The key aspect when interpreting MR results from

time-varying exposures is to consider the underlying liabil-

ity for a specific exposure trajectory. We have demon-

strated this using two exposure occasions for simplicity,

but the result holds when the liability is extended across

measures of X in continuous time (Supplementary mate-

rial, available as Supplementary data at IJE online). MR

with a genetic instrument using an exposure measured at a

single time point provides an unbiased estimate of the

causal effect of moving the liability L (as induced by the in-

strument) such that the exposure at the single time point

would be expected to increase by one unit. Care must be

taken in interpretation of the results of MR analyses using

a single measure of a time-varying exposure, as temporal

effects cannot be inferred in the presence of a genetic in-

strument obtained from a single time point. It is important

for future research to consider the exposure trajectories for

every genetic instrument used.25
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